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Abstract

This note describes algorithms for estimating the trend, seasonal, and residual compo-
nent of unevenly spaced times series. An implementation as an R package is forthcoming.

1 Introduction

When estimating a time series model such as an autoregressive moving-average (ARMA) model,
it is common to first remove the trend and seasonality from the data in order to isolate the non-
deterministic behavior. This paper describes such methods for unevenly spaced (also called
unequally- or irregularly-spaced) time series.

There exists an extensive body of literature on trend and seasonality estimation for equally
spaced time series data, see Cleveland et al. (1990), Chapter 1 in Brockwell and Davis (1991),
Chapter 9 in Box et al. (2015), and a website by U.S. Census Bureau.1 On the other hand, few
methods exists specifically for unevenly spaced time series, even though such data naturally
occurs in many industrial and scientific domains, such as astronomy, biology, climatology,
economics, finance, geology, and network traffic analysis.

Perhaps the most common approach is to transform unevenly spaced data into equally
spaced observations using some form of interpolation - most often linear - and then to apply
existing methods for equally spaced time series. However, transforming time series data in
such a way introduces several biases, see Scholes and Williams (1977), Lundin et al. (1999),
Hayashi and Yoshida (2005), Rehfeld et al. (2011), and Eckner (2017). In particular, as
shown below, linear interpolation tends to trim down the hills and fill in the valleys of seasonal
fluctuations. In other words, seasonality estimates based on linearly-interpolated data can
severely underestimate the true extent of seasonal fluctuations.

∗Comments are welcome at andreas@eckner.com
1See www.census.gov/srd/www/sapaper/
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1.1 Basic Framework

We use the notation ((tn, Xn) : 1 ≤ n ≤ N(X)) or (Xtn : 1 ≤ n ≤ N(X)) to denote an
unevenly spaced time series X with observation times T (X) = {t1, . . . , tN(X)} and observation
values V (X) = (X1, . . . , XN(X)), where N(X) denotes the length of the time series. For a time
point t ∈ R, X[t]linear denotes the linearly-interpolated (or sampled) value of X at time t.

2 Trend Estimation

Consider an unevenly spaced time series X of the form

Xt = mt + Yt, t ∈ T (X),

where m is a deterministic trend and Y is the realization of a stationary stochastic process with
mean zero. If necessary, we first apply a transformation to X, such as taking the logarithm,
to achieve this form.

Method 1 (Parametric least squares) Assume that m comes from a parametric family of
functions, for example,

mt = a0 + a1t+ . . .+ aqt
q. (1)

The parameters a0, a1, . . . , aq can be estimated by minimizing∫ maxT (X)

minT (X)
(X[t]linear −mt)

2 dt. (2)

For computational convenience, (2) can be approximated by2

N(X)∑
i=1

(Xti −mti)
2ω(ti)

where the weights

ω(ti) = ω(ti, T (X)) =


ti+1 − ti−1 if 1 < i < N(X),

t2 − t1 if i = 1,
tN(X) − tN(X)−1 if i = N(X)

(3)

are inversely related to the local observation density of the time series.3

Often, a linear or quadratic trend (q = 1 or 2 in (1)) will be sufficient for Ŷ = X − m̂ to
look like a stationary time series.

2The approximation replaces each value of X[t]linear in (2) by the closest available observation value of X
and uses a similar approximation for mt.

3If the time series X has very large gaps, the weight ω of the last observation before and first observation after
the gap could be undesirably large. In this case, one could either solve (2) exactly using numerical integration,
or insert linearly-interpolated auxiliary observation into the time series X.
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Method 2 (Two-sided moving average) For a smoothing window width τ > 0 and time
series X, let

TSMA(X, τ)t =
1

τ

∫ τ/2

−τ/2
X[t+ s]linear ds, t ∈ T (X),

denote the two-sided simple moving average.4 If mt is linear over the interval [t−τ/2, t+τ/2],
then

TSMA(X, τ)t = mt +
1

τ

∫ τ/2

−τ/2
Y [t+ s]linear ds.

Hence, mt ≈ TSMA(X, τ)t provided that the average value of Y in the interval [t−τ/2, t+τ/2]
is close to zero. Therefore,

m̂t = TSMA(X, τ)t

can be used as an estimate of the time series trend as long as mt is approximately linear over
time intervals of length τ .

This method calculates a local average of observation values and is therefore able to capture
time-varying trends, although at the expense of an increased estimation variance compared to
the previous method. However, local averages can be badly biased at the boundary (in our
case, close to the beginning and end of a time series), see Hastie et al. (2009), Chapter 6.1.1.
This bias can be avoided by using local regression instead of local averaging, see also Cleveland
and Devlin (1988) and Cleveland et al. (1988).

Method 3 (Local linear regression) Choose a smoothing kernel (that is, a weighting func-
tion) Kτ and kernel width τ > 0 , for example,

Kτ (t, s) =
1

τ
1|t−s|≤τ/2.

For each t ∈ T (X) minimize∫ maxT (X)

minT (X)
Kτ (t, s)(X[s]linear − αt − βts)2 ds (4)

with respect to αt and βt. For computational convenience, (4) can be approximated by the
locally weighted regression problem

arg min
αt,βt

N(X)∑
i=1

ω(ti)Kτ (t, ti)(Xti − αt − βtti)2, (5)

with weights ω(ti) given by (3). The trend estimate is given by

m̂t = α̂t + β̂tt, t ∈ T (X).

See Hastie et al. (2009), Chapter 6 for an automated choice of the kernel width using
cross-validation. Packages for solving local regressions problems of the form (5) are available
for a variety of programming languages, such as the loess function in R, which in turn is builds
on the C and Fortran implementation by Cleveland et al. (1992).

4We assume that sampled values before the first observation time, t1, are equal to the first observation value,
Xt1 . While potentially not appropriate for some applications, this assumption avoids the treatment of a several
special cases.
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3 Seasonality Estimation

Consider an unevenly spaced time series X of the form

Xt = st + Yt, t ∈ T (X),

where s : R → R is a deterministic seasonal component with period d (i.e. st+d = st for all

t ∈ R) and normalization
∫ t0+d
t0

st dt = 0 for all t0 ∈ R, and Y is the realization of a stationary
stochastic process with mean zero.

Method 4 (Averaging of subintervals) Let φX : R→ [0, d) denote the function that maps
a time point to its relative position within a season. The seasonal component can be estimated
via

ŝt = avg{X[r]linear : r ∈ [minT (X),maxT (X)], φX(r) = t} (6)

for 0 ≤ t ≤ d. The deseasonalized time series X − ŝ is defined by T (X − ŝ) = T (X) and

(X − ŝ)t = Xt − ŝφ(t), t ∈ T (X − ŝ).

It is usually necessary to drop a sampled value X[r]linear from the calculation of the average in
(6) if the associated time point r is not close to any observation time of X. Otherwise, linear
interpolation would trim down the hills and fill in the valleys of seasonal fluctuations.

4 Joint Trend and Seasonality Estimation

Consider an unevenly spaced time series X of the form

Xt = mt + st + Yt, t ∈ T (X),

where m is a deterministic trend, s : R → R is a deterministic seasonality of period d with
normalization

∫ t0+d
t0

st dt = 0 for all t0 ∈ R, and Y is the realization of a stationary stochastic
process with mean zero.

Method 5 (Iterative estimation) The trend and seasonality can be jointly estimated using
a simple iterative scheme:

Step 0: Initialize ŝt ≡ 0 on [0, d).

Step 1: Estimate the trend of X − ŝ using one of the methods in Section 2.

Step 2: Estimate the seasonality of X − m̂ using the method in Section 3.

Step 3: Repeat steps 1 and 2 until convergence.

When using local linear regression in Step 2, this method essentially is a simplified version of
the STL procedure by Cleveland et al. (1990), adapted to unevenly spaced data.
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Figure 1: Atmospheric CO2 concentration (in parts per million) at Mauna Loa Observatory, Hawaii (left-hand

side). A subsampled time series of the same data with 80% of the observations randomly removed (right-hand

side).

5 Example

We illustrate the joint trend and seasonality estimation using a time series of the atmospheric
CO2 concentration (measured in parts per million) at Mauna Loa Observatory, Hawaii.5 The
observations are from March 1958 through December 2015 (as of this writing) and at a monthly
frequency. There are 7 missing values and 687 observations in total. Figure 1 plots the
original time series (on the left-hand side) and a subsampled time series with 80% of the
observations randomly removed (on the right-hand side). In both cases, individual observations
are connected using straight lines, which amounts to plotting X[t]linear as a function of time t.
In the second plot, individual observations in addition are marked by the symbol x.

The average spacing of observations in the subsampled time series is five months. In seven
cases, the spacing is more than one year, which is more than the period length d of the seasonal
component. Figure 1 illustrates that a trend-seasonality estimation procedure based on a
transformation to equally spaced data via linear interpolation would severely underestimate
the seasonal component. The same is true for the human eye, which has a tendency to connect
dots using straight lines.

Using a log-transformation, I estimate a multiplicative decomposition of the form Xt =
mt(1 +st)(1 +Yt) using the iterative algorithm in Section 4 with local linear smoothing for the
trend estimation. Figure 2 plots the estimated trend and multiplicative seasonal component
for the original and subsampled time series. Given the highly irregular nature of the latter

5See www.esrl.noaa.gov/gmd/ccgg/trends for a detailed description and a data download section.
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Figure 2: The estimated trend (left-hand side) and multiplicative seasonal component (right-hand side) for

the original and subsampled CO2 time series. The decomposition uses the iterative algorithm in Section 4 with

local linear smoothing for the trend estimation.

time series, both decompositions are remarkably similar; the estimated trend components are
virtually indistinguishable, and the peak-to-trough size of the multiplicative seasonality is
roughly 1.7%.

Finally, we estimate the same multiplicative decomposition using R’s stl() function, which
is based on Cleveland et al. (1990). Figure 3 plots the estimated trend and multiplicative
seasonal component for the original and linearly-interpolated subsampled time series. We see
that stl() and the methodology in Section 4 produce a virtually identical decomposition for
the original CO2 data. However, for the linearly-interpolated subsampled time series, stl()
severely underestimates the variability of the seasonal component. As a consequence, the
estimated residual time series Ŷ exhibits excess variability, because it absorbs some of the
seasonal fluctuations.

Based on a simulation, Table 1 shows the expected percentage bias in the peak-to-trough
size of the seasonal component as a function of the missing data fraction for (i) the iterative
algorithm in Section 4 and (ii) stl() with linearly interpolated data.

Missing data fraction 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

% Bias of Section 4 method 0.0 0.9 1.8 2.4 3.2 3.7 4.1 4.7 4.9
% Bias of stl() 0.0 2.3 5.5 9.8 15.9 23.9 35.1 49.8 68.2

Table 1: Expected percentage bias in the peak-to-trough size of the seasonal component depending on the

fraction of missing time series observations.
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Figure 3: The estimated trend (left-hand side) and multiplicative seasonal component (right-hand side) for

the original and linearly-interpolated subsampled CO2 time series. The decomposition uses the stl() function

in R.

To be fair, the STL procedure actually was designed to handle missing values, although
not unevenly spaced data per se. It is widely used among statisticians due to its flexibility
in capturing time-varying trends, time-varying seasonal components, and automatic choice of
sensible parameters. In fact, the bias in the estimated seasonal component is entirely due to the
input time series. Any trend-seasonality estimation method applied to linearly-interpolated
data is bound to encounter the same problem.

6 Conclusion

We have shown how to estimate the trend, seasonal, and residual component of a time series
with unevenly spaced observations. Several extension that have already been explored for
equally spaced data are possible. For example, the procedures X-136 and STL support robust
estimation, that is, they limit the influence that any single observation can have on the esti-
mated trend and seasonal component. Adopting this feature for unevenly spaced time series
would be straightforward. As already mentioned, STL supports time-varying seasonality, which
could be implemented for unevenly spaced time series in a similar manner, specifically by using
rolling estimation window in the time domain.

Finally, we focused on trend and seasonality estimation techniques that at each point in time
use information about the entire time series, as opposed to only past observations. For some

6See www.census.gov/srd/www/x13as/
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applications, such as gauging the on-the-run performance of a time series forecasting model,
causality of the estimators is important. In this case, the methods discussed above could
be applied in a rolling manner to a time series, where the trend and seasonal components
are reestimated at periodic time intervals, or when a significant number of new time series
observations become available.
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